Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
PLoS One ; 19(4): e0296607, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626075

RESUMEN

Tinnitus is a common annoying symptom without effective and accepted treatment. In this controlled experimental study, photobiomodulation therapy (PBMT), which uses light to modulate and repair target tissue, was used to treat sodium salicylate (SS)-induced tinnitus in a rat animal model. Here, PBMT was performed simultaneously on the peripheral and central regions involved in tinnitus. The results were evaluated using objective tests including gap pre-pulse inhibition of acoustic startle (GPIAS), auditory brainstem response (ABR) and immunohistochemistry (IHC). Harmful neural plasticity induced by tinnitus was detected by doublecortin (DCX) protein expression, a known marker of neural plasticity. PBMT parameters were 808 nm wavelength, 165 mW/cm2 power density, and 99 J/cm2 energy density. In the tinnitus group, the mean gap in noise (GIN) value of GPIAS test was significantly decreased indicated the occurrence of an additional perceived sound like tinnitus and also the mean ABR threshold and brainstem transmission time (BTT) were significantly increased. In addition, a significant increase in DCX expression in the dorsal cochlear nucleus (DCN), dentate gyrus (DG) and the parafloccular lobe (PFL) of cerebellum was observed in the tinnitus group. In PBMT group, a significant increase in the GIN value, a significant decrease in the ABR threshold and BTT, and also significant reduction of DCX expression in the DG were observed. Based on our findings, PBMT has the potential to be used in the management of SS-induced tinnitus.


Asunto(s)
Núcleo Coclear , Terapia por Luz de Baja Intensidad , Acúfeno , Ratas , Animales , Salicilato de Sodio/farmacología , Acúfeno/inducido químicamente , Acúfeno/radioterapia , Plasticidad Neuronal/fisiología
2.
Acta Neurobiol Exp (Wars) ; 84(1): 89-97, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38587320

RESUMEN

Opioid addiction is critically dependent on the activation of N­methyl­D­aspartate (NMDA) receptors, which are widely found in the mesocorticolimbic system. Meanwhile, opioid addiction may affect the expression level of NMDA receptor subunits. The existence of GluN3 subunits in the NMDA receptor's tetramer structure reduces the excitatory current of the receptor channel. We evaluated the changes in the mRNA expression pattern of the GluN3B subunit of the NMDA receptor in rat brains following acute and chronic exposure to morphine. Chronic, escalating intraperitoneal doses of morphine or saline were administered twice daily to male Wistar rats for six days. Two other groups were injected with a single acute dose of morphine or saline. The mRNA level of the GluN3B subunit of the NMDA receptor in the striatum, hippocampus, and nucleus accumbens (NAc) was measured by real­time PCR. mRNA expression of the GluN3B subunit was considerably augmented (3.15 fold) in the NAc of animals chronically treated with morphine compared to the control group. The difference between rats that were chronically administered morphine and control rats was not statistically significant for other evaluated brain areas. In rats acutely treated with morphine, no significant differences were found for GluN3B subunit expression in the examined brain regions compared to the control group. It was concluded that chronic exposure to morphine notably increased the GluN3B subunit of the NMDA receptor in NAc. The extent of the impact of this finding on opioid addiction and its features requires further evaluation in future studies.


Asunto(s)
Morfina , Trastornos Relacionados con Opioides , Ratas , Masculino , Animales , Morfina/farmacología , Receptores de N-Metil-D-Aspartato , Ratas Wistar , Encéfalo/metabolismo , Trastornos Relacionados con Opioides/metabolismo , ARN Mensajero/metabolismo
3.
Cell Death Dis ; 14(8): 490, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528089

RESUMEN

There is accumulating evidence that the circulatory levels of autotaxin (ATX) and lysophosphatidic acid (LPA) are increased in patients with severe liver disease. However, the potential role of the ATX-LPA axis in hepatic encephalopathy (HE) remains unclear. Our study aimed to investigate the role of the ATX-LPA signaling pathway in mice with thioacetamide (TAA) induced acute HE. To show the role of the ATX-LPA axis in the context of HE, we first measured the involvement of ATX-LPA in the pathogenesis of TAA-induced acute HE. Then, we compared the potential effects of ATX inhibitor (HA130) on astrocyte responses at in vitro and gut-liver-brain axis at in vivo levels. The inflammatory chemokine (C-C motif) ligand 3 was significantly increased in the hyperammonemic condition and could be prevented by ATX inhibition in astrocytes at in vitro level. Further statistical tests revealed that plasma and tissue pro-inflammatory cytokines were inhibited by HA130 in mice. Furthermore, the stage of HE was significantly improved by HA130. The most surprising result was that HA130 alleviated immune infiltrating cells in the liver and intestine and decreased mucus-secreting cells in the intestine. Further analysis showed that the levels of liver enzymes in serum were significantly decreased in response to ATX inhibition. Surprisingly, our data indicated that HA130 could recover permeabilization of the blood-brain barrier, neuroinflammation, and recognition memory. Besides that, we found that the changes of Interleukin-1 (IL-1) and aquaporin-4 (AQP4) in HE might have a connection with the glymphatic system based on bioinformatics analyses. Taken together, our data showed that the ATX-LPA axis contributes to the pathogenesis of HE and that inhibition of ATX improves HE.


Asunto(s)
Encefalopatía Hepática , Hepatopatías , Ratones , Animales , Encéfalo
4.
Cell Mol Neurobiol ; 43(8): 3801-3814, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37605014

RESUMEN

Key biomarkers such as Brain Derived Neurotrophic Factor (BDNF) and Neurofilament light chain (NfL) play important roles in the development and progression of many neurological diseases, including multiple sclerosis, Alzheimer's disease, and Parkinson's disease. In these clinical conditions, the underlying biomarker processes are markedly heterogeneous. In this context, robust biomarker discovery is of critical importance for screening, early detection, and monitoring of neurological diseases. The difficulty of directly identifying biochemical processes in the central nervous system (CNS) is challenging. In recent years, biomarkers of CNS inflammatory response have been identified in various body fluids such as blood, cerebrospinal fluid, and tears. Furthermore, biotechnology and nanotechnology have facilitated the development of biosensor platforms capable of real-time detection of multiple biomarkers in clinically relevant samples. Biosensing technology is approaching maturity and will be deployed in communities, at which point screening programs and personalized medicine will become a reality. In this multidisciplinary review, our goal is to highlight clinical and current technological advances in the development of multiplex-based solutions for effective diagnosis and monitoring of neuroinflammatory and neurodegenerative diseases. The trend in the detection if BDNF and NfL.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Múltiple , Enfermedades Neurodegenerativas , Humanos , Factor Neurotrófico Derivado del Encéfalo , Proteínas de Neurofilamentos/líquido cefalorraquídeo , Biomarcadores , Enfermedades Neurodegenerativas/diagnóstico
5.
Biomedicines ; 11(5)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37238943

RESUMEN

A common neuropsychiatric complication of advanced liver disease, hepatic encephalopathy (HE), impacts the quality of life and length of hospital stays. There is new evidence that gut microbiota plays a significant role in brain development and cerebral homeostasis. Microbiota metabolites are providing a new avenue of therapeutic options for several neurological-related disorders. For instance, the gut microbiota composition and blood-brain barrier (BBB) integrity are altered in HE in a variety of clinical and experimental studies. Furthermore, probiotics, prebiotics, antibiotics, and fecal microbiota transplantation have been shown to positively affect BBB integrity in disease models that are potentially extendable to HE by targeting gut microbiota. However, the mechanisms that underlie microbiota dysbiosis and its effects on the BBB are still unclear in HE. To this end, the aim of this review was to summarize the clinical and experimental evidence of gut dysbiosis and BBB disruption in HE and a possible mechanism.

6.
Indian J Otolaryngol Head Neck Surg ; 75(Suppl 1): 6-15, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37206728

RESUMEN

Tinnitus is a symptom of various disorders that affects the quality of life of millions people. Given the significance of the access to an objective and non-invasive method for tinnitus detection, in this study the auditory brainstem response (ABR) electrophysiological test was used to diagnose salicylate-induced tinnitus, in parallel with common behavioral tests. Wistar rats were divided into saline (n = 7), and salicylate (n = 7) groups for behavioral tests, and salicylate group (n = 5) for the ABR test. The rats were evaluated by pre-pulse inhibition (PPI), gap pre-pulse inhibition of the acoustic startle (GPIAS), and ABR tests, at baseline, 14 and 62 h after salicylate (350 mg/kg) or vehicle injection. The mean percentage of GPIAS test was significantly reduced following salicylate administration, which confirms the induction of tinnitus. The ABR test results showed an increase in the hearing threshold at click and 8, 12, and 16 kHz tones. Moreover, a decline was observed in the latency ratio of II-I waves in all tone burst frequencies with the highest variation in 12 and 16 kHz as well as a decrement in the latency ratio of III-I and IV-I only in 12 and 16 kHz. ABR test is able to evaluate the salicylate induced tinnitus pitch and confirm the results of behavioral tinnitus tests. GPIAS reflexive response is dependent on brainstem circuits and the auditory cortex while, ABR test can demonstrate the function of the auditory brainstem in more details, and therefore, a combination of these two tests can offer a more accurate tinnitus evaluation.

7.
Indian J Otolaryngol Head Neck Surg ; 75(Suppl 1): 507-513, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37206834

RESUMEN

Tinnitus and hearing loss are common problems that can be investigated via subjective and objective approaches. Previous studies have suggested a potential relationship between serum levels of Brain-Derived Neurotrophic Factor (BDNF) and tinnitus, reporting it as a potential objective biomarker for tinnitus. Therefore, the present study aimed to investigate the serum levels of BDNF in patients with tinnitus and/or hearing loss. Sixty patients were divided into 3 groups: Normal hearing with tinnitus (NH-T), hearing Loss with tinnitus (HL-T), and hearing loss without tinnitus (HL-NT). Moreover, 20 healthy participants were assigned to the control group or NH-NT. All participants were assessed using comprehensive audiological evaluations, serum BDNF level assessment, Tinnitus Handicap Inventory (THI), and Beck's Depression Inventory (BDI). There were significant intergroup differences in serum BDNF levels (p < 0.05), with the HL-T group showing the lowest BDNF levels. Moreover, the NH-T group had lower levels of BDNF compared to the HL-NT group. On the other hand, serum BDNF levels were significantly decreased in patients with an increased hearing threshold (p < 0.05). Also, serum BDNF levels had no significant relationship with tinnitus duration and loudness, as well as THI and BDI scores. The present study was the first to illustrate the importance of serum BDNF levels as a possible biomarker for predicting the severity of hearing loss and tinnitus in the affected patients. Also, it is possible that BDNF assessment can help find effective therapeutic methods for patients with hearing problems. Supplementary Information: The online version contains supplementary material available at 10.1007/s12070-023-03600-z.

8.
Cells ; 12(7)2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-37048052

RESUMEN

Hepatic encephalopathy (HE) is a neurological complication of liver disease resulting in cognitive, psychiatric, and motor symptoms. Although hyperammonemia is a key factor in the pathogenesis of HE, several other factors have recently been discovered. Among these, the impairment of a highly organized perivascular network known as the glymphatic pathway seems to be involved in the progression of some neurological complications due to the accumulation of misfolded proteins and waste substances in the brain interstitial fluids (ISF). The glymphatic system plays an important role in the clearance of brain metabolic derivatives and prevents aggregation of neurotoxic agents in the brain ISF. Impairment of it will result in aggravated accumulation of neurotoxic agents in the brain ISF. This could also be the case in patients with liver failure complicated by HE. Indeed, accumulation of some metabolic by-products and agents such as ammonia, glutamine, glutamate, and aromatic amino acids has been reported in the human brain ISF using microdialysis technique is attributed to worsening of HE and correlates with brain edema. Furthermore, it has been reported that the glymphatic system is impaired in the olfactory bulb, prefrontal cortex, and hippocampus in an experimental model of HE. In this review, we discuss different factors that may affect the function of the glymphatic pathways and how these changes may be involved in HE.


Asunto(s)
Edema Encefálico , Sistema Glinfático , Encefalopatía Hepática , Humanos , Sistema Glinfático/metabolismo , Encefalopatía Hepática/etiología , Encéfalo/metabolismo , Edema Encefálico/metabolismo , Corteza Prefrontal/metabolismo
9.
Bioinform Biol Insights ; 17: 11779322231155068, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36814683

RESUMEN

Hepatic encephalopathy (HE) is a set of complex neurological complications that arise from advanced liver disease. The precise molecular and cellular mechanism of HE is not fully understood. Differentially expressed genes (DEGs) from microarray technologies are powerful approaches to obtain new insight into the pathophysiology of HE. We analyzed microarray data sets of cirrhotic patients with HE from Gene Expression Omnibus to identify DEGs in postmortem cerebral tissues. Consequently, we uploaded significant DEGs into the STRING to specify protein-protein interactions. Cytoscape was used to reconstruct the genetic network and identify hub genes. Target genes were uploaded to different databases to perform comprehensive enrichment analysis and repurpose new therapeutic options for HE. A total of 457 DEGs were identified in 2 data sets totally from 12 cirrhotic patients with HE compared with 12 healthy subjects. We found that 274 genes were upregulated and 183 genes were downregulated. Network analyses on significant DEGs indicated 12 hub genes associated with HE. Enrichment analysis identified fatty acid beta-oxidation, cerebral organic acidurias, and regulation of actin cytoskeleton as main involved pathways associated with upregulated genes; serotonin receptor 2 and ELK-SRF/GATA4 signaling, GPCRs, class A rhodopsin-like, and p38 MAPK signaling pathway were related to downregulated genes. Finally, we predicted 39 probable effective drugs/agents for HE. This study not only confirms main important involved mechanisms of HE but also reveals some yet unknown activated molecular and cellular pathways in human HE. In addition, new targets were identified that could be of value in the future study of HE.

10.
BMC Psychiatry ; 23(1): 40, 2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-36641432

RESUMEN

Schizophrenia (SCZ) is a severe mental illness mainly characterized by a number of psychiatric symptoms. Obsessive-compulsive disorder (OCD) is a long-lasting and devastating mental disorder. SCZ has high co-occurrence with OCD resulting in the emergence of a concept entitled "schizo-obsessive disorder" as a new specific clinical entity with more severe psychiatric symptoms. Many studies have been done on SCZ and OCD, but the common pathogenesis between them is not clear yet. Therefore, this study aimed to identify shared genetic basis, potential biomarkers and therapeutic targets between these two disorders. Gene sets were extracted from the Geneweaver and Harmonizome databases for each disorder. Interestingly, the combination of both sets revealed 89 common genes between SCZ and OCD, the most important of which were BDNF, SLC6A4, GAD1, HTR2A, GRIN2B, DRD2, SLC6A3, COMT, TH and DLG4. Then, we conducted a comprehensive bioinformatics analysis of the common genes. Receptor activity as the molecular functions, neuron projection and synapse as the cellular components as well as serotonergic synapse, dopaminergic synapse and alcoholism as the pathways were the most significant commonalities in enrichment analyses. In addition, transcription factor (TFs) analysis predicted significant TFs such as HMGA1, MAPK14, HINFP and TEAD2. Hsa-miR-3121-3p and hsa-miR-495-3p were the most important microRNAs (miRNAs) associated with both disorders. Finally, our study predicted 19 existing drugs (importantly, Haloperidol, Fluoxetine and Melatonin) that may have a potential influence on this co-occurrence. To summarize, this study may help us to better understand and handle the co-occurrence of SCZ and OCD by identifying potential biomarkers and therapeutic targets.


Asunto(s)
Trastorno Obsesivo Compulsivo , Trastornos Psicóticos , Esquizofrenia , Humanos , Haloperidol/uso terapéutico , MicroARNs , Trastorno Obsesivo Compulsivo/diagnóstico , Trastornos Psicóticos/complicaciones , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/genética , Esquizofrenia/complicaciones , Proteínas de Transporte de Serotonina en la Membrana Plasmática
11.
Braz. j. otorhinolaryngol. (Impr.) ; 88(supl.3): 130-138, Nov.-Dec. 2022. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1420841

RESUMEN

Abstract Objective: Tinnitus can result from auditory system reorganization due to neural activity dysfunctions. Auditory stimulation can cause temporary or persistent tinnitus alleviation by altering the neural generators. The present study investigated the changes in Late-Latency Auditory Evoked Potentials (LLAEPs) after tinnitus suppression using auditory stimulation with short-term Residual Inhibition (RI) and long-term Tinnitus Masker (TM). Methods: The study included 40 participates with equal numbers in the Tinnitus Group (TG), including the chronic tinnitus subjects, and the Control Group (CG), including matched volunteers. The participants had normal hearing in conventional audiometry. All the participants underwent LLAEP recording pre-intervention and after a one-minute auditory stimulation (RI), as well as a pre-intervention Dichotic Digit Test (DDT) as a behavioral assessment of the selective attention. Moreover, TG underwent a 3-month course of TM, a third LLAEP recording post-TM, a second DDT post-TM, and the Tinnitus Handicap Inventory (THI) before and after the TM. Results: In the baseline LLAEP recording, the TG had significantly later N1, P3a, and P3b latencies, as well as significantly lower P3a and P3b amplitudes. The second LLAEP recording showed a significant intragroup increase in P3a amplitude and a significant decrease in P3a latency in the TG, while no significant intragroup difference was observed in the CG. In the third LLAEP recording performed on TG, the P3a amplitude and latency had significant changes compared to the second recording, while the N1 latency was significantly decreased. Moreover, the DDT and THI scores had significant improvement after the TM in TG. Conclusions: The present study showed the neurophysiological changes after short-term (RI) and long-term (TM) auditory stimulations in tinnitus subjects. The LLAEP changes suggest that these interventions lead to tinnitus suppression through common mechanisms. The electrophysiological observation was also confirmed using behavioral assessments. Level of evidence: This study type is a "comparative study" with the level of evidence "3".

12.
Braz J Otorhinolaryngol ; 88 Suppl 3: S130-S138, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36335029

RESUMEN

OBJECTIVE: Tinnitus can result from auditory system reorganization due to neural activity dysfunctions. Auditory stimulation can cause temporary or persistent tinnitus alleviation by altering the neural generators. The present study investigated the changes in Late-Latency Auditory Evoked Potentials (LLAEPs) after tinnitus suppression using auditory stimulation with short-term Residual Inhibition (RI) and long-term Tinnitus Masker (TM). METHODS: The study included 40 participates with equal numbers in the Tinnitus Group (TG), including the chronic tinnitus subjects, and the Control Group (CG), including matched volunteers. The participants had normal hearing in conventional audiometry. All the participants underwent LLAEP recording pre-intervention and after a one-minute auditory stimulation (RI), as well as a pre-intervention Dichotic Digit Test (DDT) as a behavioral assessment of the selective attention. Moreover, TG underwent a 3-month course of TM, a third LLAEP recording post-TM, a second DDT post-TM, and the Tinnitus Handicap Inventory (THI) before and after the TM. RESULTS: In the baseline LLAEP recording, the TG had significantly later N1, P3a, and P3b latencies, as well as significantly lower P3a and P3b amplitudes. The second LLAEP recording showed a significant intragroup increase in P3a amplitude and a significant decrease in P3a latency in the TG, while no significant intragroup difference was observed in the CG. In the third LLAEP recording performed on TG, the P3a amplitude and latency had significant changes compared to the second recording, while the N1 latency was significantly decreased. Moreover, the DDT and THI scores had significant improvement after the TM in TG. CONCLUSIONS: The present study showed the neurophysiological changes after short-term (RI) and long-term (TM) auditory stimulations in tinnitus subjects. The LLAEP changes suggest that these interventions lead to tinnitus suppression through common mechanisms. The electrophysiological observation was also confirmed using behavioral assessments. LEVEL OF EVIDENCE: This study type is a "comparative study" with the level of evidence "3".


Asunto(s)
Acúfeno , Humanos , Estimulación Acústica , Potenciales Evocados Auditivos/fisiología , Tiempo de Reacción/fisiología , Acúfeno/terapia
13.
Acta Histochem ; 124(7): 151960, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36202047

RESUMEN

Hepatic encephalopathy (HE), which is caused by neurotoxin agents in the liver, is a complicated condition with a variety of neurological manifestations. Recently, endocrine alterations have been more paid attention to for neurological severity in the course of HE, e.g. adrenal gland. To identify the role of adrenal gland in the context of HE, we evaluated the functional changes of adrenal gland (i.e., plasma corticosterone concentrations and histopathological changes) in mice model of HE. To dig deep into the molecular and genetic underpinnings, a comprehensive enrichment analysis for shared genes between HE and adrenal insufficiency (AI) was also performed. Our results showed a significant reduction in the level of plasma corticosterone and severe cellular necrosis in zona fasciculate of adrenal cortex, possibly indicating adrenal insufficiency. Enrichment analysis indicated four common genes, besides predicted five novel genes and some significant MicroRNAs (miRNAs) and transcription factors for both HE and AI. Couples with, several biological processes, such as DNA damage, inflammatory responses, glycolytic processes, and insulin receptor signaling pathway were predicted in both HE and AI. To sum up, data from experimental tests and bioinformatics analyses suggest that AI play an important role in the pathogenesis and progression of HE.


Asunto(s)
Insuficiencia Suprarrenal , Encefalopatía Hepática , MicroARNs , Glándulas Suprarrenales/metabolismo , Insuficiencia Suprarrenal/etiología , Insuficiencia Suprarrenal/metabolismo , Animales , Biología Computacional , Corticosterona , Modelos Animales de Enfermedad , Encefalopatía Hepática/genética , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Neurotoxinas/metabolismo , Receptor de Insulina/metabolismo , Factores de Transcripción/metabolismo
14.
Iran J Basic Med Sci ; 25(10): 1177-1182, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36311202

RESUMEN

Objectives: Tinnitus is defined as ringing of the ears that is experienced when there is no external sound source, and is an auditory phantom sensation. The insula as a multimodal cortex has been shown to be involved in the processing of auditory stimuli rather than other sensory and motor processing and reported to correlate with some aspects of tinnitus. However, its exact role is not clear. The present study aimed to investigate the effect of excitotoxic lesions limited to the insular cortex on the ability to detect a gap in background noise. Materials and Methods: Gap detection test and prepulse inhibition, two objective measurements of auditory startle response, were measured, in 33 male Wistar rats, before and up to four weeks after insular lesion in three experimental groups (sham, control, and lesion). Results: The ability to detect the gap interposed between 60 db background noise was impaired at weeks 2, 3, and 4 following insular lesion, while prepulse inhibition remained intact up to four weeks after surgery. Conclusion: These findings indicated that excitotoxic lesions of the insular cortex may produce a tinnitus-like phenomenon in rats while sparing the hearing sensitivity; suggesting that the insular cortex may have a role in the development of tinnitus.

15.
J Pers Med ; 12(7)2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35887540

RESUMEN

Background: There are no data available on the levels of genetic networks between obsessive-compulsive disorder (OCD) and multiple sclerosis (MS). To this point, we aimed to investigate common mechanisms and pathways using bioinformatics approaches to find novel genes that may be involved in the pathogenesis of OCD in MS. Methods: To obtain gene-gene interactions for MS and OCD, the STRING database was used. Cytoscape was then used to reconstruct and visualize graphs. Then, ToppGene and Enrichr were used to identify the main pathological processes and pathways involved in MS-OCD novel genes. Additionally, to predict transcription factors and microRNAs (miRNAs), the Enrichr database and miRDB database were used, respectively. Results: Our bioinformatics analysis showed that the signal transducer and the activator of transcription 3 (STAT3) and neurotrophic receptor tyrosine kinase 2 (NTRK2) genes had connections with 32 shared genes between MS and OCD. Furthermore, STAT3 and NTRK2 had the greatest enrichment parameters (i.e., molecular function, cellular components, and signaling pathways) among ten hub genes. Conclusions: To summarize, data from our bioinformatics analysis showed that there was a significant overlap in the genetic components of MS and OCD. The findings from this study make two contributions to future studies. First, predicted mechanisms related to STAT3 and NTRK2 in the context of MS and OCD can be investigated for pharmacological interventions. Second, predicted miRNAs related to STAT3 and NTRK2 can be tested as biomarkers in MS with OCD comorbidity. However, our study involved bioinformatics research; therefore, considerable experimental work (e.g., postmortem studies, case-control studies, and cohort studies) will need to be conducted to determine the etiology of OCD in MS from a mechanistic view.

16.
Exp Brain Res ; 240(9): 2311-2326, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35876852

RESUMEN

The evidence for the hemispheric specialization of motor planning reveals several inconsistencies between the left-lateralized hypothesis and a distributed system across the hemispheres. We compared participants with left hemiplegic cerebral palsy (HCP) to right-handed control subjects in this study's first experiment by inviting them to perform a motor planning task. Participants were required to release the start button, grasp a hexagon, and rotate it according to the instructions. In the second experiment, we compared left-HCP subjects with right-HCP subjects inviting them to perform the same task (we used the data for left-HCP subjects from the first experiment). P2 amplitude, as well as planning time, grasping time, releasing time, and initial grip selection planning patterns, were used as outcome measures in both experiments. The first experiment revealed that controls acted more quickly and chose more effective planning patterns. Also, the P2 amplitude was smaller in left-HCP subjects than in control subjects. No significant group effect was observed in the second experiment for any movement-related measure or P2. At the neural level, however, there was an interaction between 'region' and 'group,' indicating the distinction between the two groups in the right region. The results are discussed in terms of motor planning's hemispheric distribution and individual differences in the HCP group.


Asunto(s)
Parálisis Cerebral , Parálisis Cerebral/complicaciones , Potenciales Evocados , Lateralidad Funcional , Fuerza de la Mano , Hemiplejía/etiología , Humanos , Desempeño Psicomotor
17.
Nanotechnology ; 33(44)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35882099

RESUMEN

Despite the development of many novel carriers for the delivery of various types of genetic material, the lack of a delivery system with high efficiency and low cytotoxicity is a major bottleneck. Herein, low molecular weight polyethylenimine (PEI1.8k) was functionalized with saponin residues using phenylboronic acid (PBA) as an ATP-responsive cross-linker, and a fluorinated side chain to construct PEI-PBA-SAP-F polycation as a highly efficient delivery vector. This vehicle could transfect small plasmid DNA (∼3 kb) with outstanding efficiency into various cells, including HEK 293T, NIH3T3, A549, PC12, MCF7 and HT-29, as well as robust transfection of a large plasmid (∼9 kb) into HEK 293T cells. The carrier indicated good transfection efficacy even at high concentration of serum and low doses of plasmid. The use of green fluorescent protein (GFP) knock-out analysis demonstrated transfection of different types of CRISPR/Cas9 complexes (Cas9/sgRNA ribonucleoproteins RNP, plasmid encoding Cas9 plus sgRNA targeting GFP, Cas9 expression plasmid plusin vitro-prepared sgRNA). In summary, we report an effective PEI-PBA-SAP-F gene carrier with the appropriate lipophilic/cationic balance for biomedical applications.


Asunto(s)
Flúor , Saponinas , Animales , Técnicas de Transferencia de Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Células 3T3 NIH , Plásmidos/genética , Polielectrolitos , Polietileneimina/química , Transfección
18.
Sci Total Environ ; 830: 154810, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35341867

RESUMEN

Agricultural activities in the concept of integrated water resources management play a vital role. Especially in dry and semi-dry regions, agricultural activities have the largest share of water consumption. By employing a model-based approach using modified Soil and Water Assessment Tool (SWAT agro-hydrological model), this study has prepared Water Accounting Plus (WA+) framework requirements to investigate different conditions of supply and demand in wet (1985-2000) and dry (2001-2015) periods in a semi-dry basin (Karkheh River Basin) in Iran. Our assessments based on WA+ show decreasing 10% (21.65 to 19.29 Billion Cubic Meters (BCM)/year) of precipitation in the dry period caused a 4% (0.13 BCM/year) decline in natural evapotranspiration. However, the basin experienced a 24% increment in evapotranspiration from agricultural activities at the same period, and runoff was approximately halved (2.45 BCM/year). Therefore, especially in downstream parts, surface water withdrawal has decreased by 18%. These new conditions have put pressure on groundwater resources. The aquifer extraction and total withdrawal for irrigation have grown by about 17% and 4%, respectively. Finally, it is evident that the manageable water has diminished due to climate change; not only the managed water consumption in the basin has not reduced, but it has also highly risen. The current study results help water authorities arrange new hydrological and climatic conditions strategies.


Asunto(s)
Recursos Hídricos , Agua , Agricultura , Hidrología , Ríos
19.
Parasitol Int ; 87: 102523, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34929407

RESUMEN

Acanthamoeba castellanii (A. castellanii) is an important opportunistic parasite. Induction of oxidative stress by the host immune system is one of the most important defense strategies against parasites. Hence, parasites partly deal with oxidative stress by different mechanisms. Identifying resistance mechanisms of A. castellanii parasites against oxidative stress is important to achieve a new therapeutic approach. Thus, this study aimed to understand the resistance mechanisms of A. castellanii, against oxidative stress. Trophozoites of A. castellanii were treated with different concentrations of H2O2. The half maximal inhibitory concentration (IC50) of H2O2 was determined using the MTT assay. The induction of oxidative stress was confirmed by flow cytometer. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) were determined. The gene expression levels of CAT and SOD were measured by qRT-PCR. Furthermore, 3-amino-1:2:4-triazole (3-AT) and potassium cyanide (KCN) were used as specific inhibitors of CAT and SOD, respectively. Cell cycle assay and the apoptosis were evaluated by flow cytometer. The activities of SOD, CAT, GR, and GPx, showed an increase in oxidative stress. The cell cycle analysis revealed that most of the cellular population was in G0 and G1 phases. The apoptosis increased in oxidative stress conditions. Moreover, the apoptosis significantly increased after the specific inhibition of CAT and SOD under oxidative stress. The gene expression levels of CAT and SOD significantly increased under oxidative stress. A. castellanii can resist the host immune system through various mechanisms, including evoking its antioxidant enzymes. Therefore, by reducing or inhibiting the activity of the parasite's antioxidant enzymes such as SOD and CAT, it is possible to cope with A. castellanii.


Asunto(s)
Acanthamoeba castellanii/enzimología , Antioxidantes/fisiología , Peróxido de Hidrógeno/efectos adversos , Estrés Oxidativo/fisiología , Acanthamoeba castellanii/clasificación , Acanthamoeba castellanii/genética , Acanthamoeba castellanii/metabolismo , Animales , Antioxidantes/metabolismo , Apoptosis , Catalasa/metabolismo , Ciclo Celular , Regulación Enzimológica de la Expresión Génica , Genotipo , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/genética , Glutatión Reductasa/metabolismo , Concentración 50 Inhibidora , Estrés Oxidativo/efectos de los fármacos , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
20.
Basic Clin Neurosci ; 13(5): 709-718, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37313026

RESUMEN

Introduction: Maintenance of neurogenesis depends on the function of some histone-modifying enzymes; including Enhancer of zeste homolog 2 (EZH2) and histone acetyltransferases (P300). The mechanism of epigenetic regulation and gene expression underlying the transition of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) into MNs has not been fully clarified. Methods: Two morphogens; sonic hedgehog (Shh: 100 ng/mL) and retinoic acid (RA: 0.01 mM) were involved in the specification of hUCB-MSCs into MNs after MSC characterization using Flow cytometry. Real time-quantitative PCR and immunocytochemistry were performed to find the expression of the genes at the level of mRNA and protein. Results: The expression of MN-related markers was confirmed at the level of mRNA and protein by induction of differentiation. The results were confirmed by immunocytochemistry and showed those mean cell percentages of 55.33%±15.885% and 49.67%±13.796% could express Islet-1 and ChAT, respectively. The gene expression level of Islet-1 and ChAT was significantly increased in the first and second week of exposure, respectively. After two weeks, the expression level of P300 and EZH-2 genes increased remarkably. No significant expression of Mnx-1 was detected when compared to the control sample. Conclusion: MN-related markers, Islet-1 and ChAT, were detected in differentiated cells of hUCB-MSCs, supporting the potency of cord blood cells in the regeneration of MN-related disorders. Assessing these epigenetic regulatory genes at the protein level can be suggested to confirm their functional epigenetic modifying effects during motor neuron differentiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...